Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars

Autor: John P. Grotzinger, David T. Vaniman, Javier Martin-Torres, Fred Calef, Jeffrey R. Johnson, Kenneth S. Edgett, Cécile Fabre, Stéphane Le Mouélic, Jérémie Lasue, Susanne Schröder, Raymond E. Arvidson, Violaine Sautter, Ann Ollila, John L. Campbell, Jens Frydenvang, Jeff A. Berger, Nicolas Mangold, Allan H. Treiman, Craig Hardgrove, María Paz Zorzano, James F. Bell, Douglas W. Ming, Scott VanBommel, Agnes Cousin, Horton E. Newsom, Woodward W. Fischer, Nathan T. Bridges, Marie J. McBride, Olivier Forni, Michael C. Malin, Roger C. Wiens, Samuel M. Clegg, Richard V. Morris, Martin R. Fisk, Sylvestre Maurice, Scott M. McLennan, Ralf Gellert, Nina Lanza, Benton C. Clark, Diana L. Blaney, Melissa S. Rice, Lucy M. Thompson, Joel A. Hurowitz, Keian R. Hardy
Rok vydání: 2016
Předmět:
Zdroj: Geophysical Research Letters. 43:7398-7407
ISSN: 0094-8276
Popis: The Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.
Databáze: OpenAIRE