Impact of insulator layer thickness on the performance of metal–MgO–ZnO tunneling diodes
Autor: | Yue Zhang, Yousong Gu, Max A. Migliorato, Xuhui Yang |
---|---|
Rok vydání: | 2016 |
Předmět: |
010302 applied physics
Materials science business.industry Nanowire Schottky diode Nanotechnology Insulator (electricity) 02 engineering and technology 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Atomic and Molecular Physics and Optics law.invention Depletion region law Electric field 0103 physical sciences Optoelectronics General Materials Science Electrical and Electronic Engineering 0210 nano-technology business Quantum tunnelling Diode Light-emitting diode |
Zdroj: | Nano Research. 9:1290-1299 |
ISSN: | 1998-0000 1998-0124 |
DOI: | 10.1007/s12274-016-1024-y |
Popis: | The performance of metal–insulator–semiconductor (MIS) type tunneling diodes based on ZnO nanostructures is investigated through modeling. The framework used in this work is the Schrodinger equation with an effective-mass approximation. The working mechanism of the MIS type tunneling diode is investigated by examining the electron density, electric field, electrostatic potential, and conduction band edge of the device. We show that a valley in the electrostatic potential is formed at the ZnO/MgO interface, which induces an energy barrier at the ZnO side of this interface. Therefore, electrons need to overcome two barriers: the high and narrow MgO barrier, and the barrier from the depletion region induced at the ZnO side of the ZnO/MgO interface. As the MgO layer becomes thicker, the valley in electrostatic potential becomes deeper. At the same time, the barrier induced at the ZnO/MgO interface becomes higher and wider. This leads to a fast decrease in the current passing through the MIS diode. We optimize the thickness of the MgO insulating layer, sandwiched between a ZnO film (in this work we use a single ZnO nanowire) and a metal contact, to achieve maximum performance of the diode, in terms of rectification ratio. An optimal MgO layer thickness of 1.5 nm is found to yield the highest rectification ratio, of approximately 169 times that of a conventional metal–semiconductor–metal Schottky diode. These simulated results can be useful in the design and optimization of ZnO nanodevices, such as light emitting diodes and UV photodetectors. |
Databáze: | OpenAIRE |
Externí odkaz: |