Evaluation of time-series Sentinel-2 images for early estimation of rice yields in south-west of Iran

Autor: Payam Najafi, Akram Eftekhari, Alireza Sharifi
Rok vydání: 2023
Předmět:
Zdroj: Aircraft Engineering and Aerospace Technology. 95:741-748
ISSN: 1748-8842
Popis: Purpose In the past three decades, remote sensing-based models for estimating crop yield have addressed critical problems of general food security, as the unavailability of grains such as rice creates serious worldwide food insecurity problems. The main purpose of this study was to compare the potential of time-series Landsat-8 and Sentinel-2 data to predict rice yield several weeks before harvest on a regional scale. Design/methodology/approach To this end, the sum of normalized difference vegetation index (NDVI)-based models created the best agreement with actual yield data at the golden time window of six weeks before harvest when rice grains were in milky and mature growth stages. The application of nine other vegetation indicators was also investigated in the golden time window in comparison to NDVI. Findings The findings of this study demonstrate the viability of identifying locations with poor and superior performance in terms of production management approaches through a rapid and economical solution for early rice grain yield assessment. Results indicated that while some of those, such as enhanced vegetation index (EVI) and optimized soil adjusted vegetation index, were able to estimate rice yield with high accuracy, NDVI is still the best indicator to predict rice yield before harvest. However, experiments can be conducted in different regions in future studies to evaluate the generalizability of the approach. Originality/value To achieve this objective, the authors considered the following purposes: using Sentinel-2 time-series data, determining the appropriate growth stage for estimating rice yield and evaluating different vegetation indices for estimating rice yield.
Databáze: OpenAIRE