Peano Continua with Unique Symmetric Products
Autor: | David Herrera-Carrasco, Fernando Macías-Romero, Francisco Vazquez-Juarez |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Journal of Mathematics Research. 4 |
ISSN: | 1916-9809 1916-9795 |
DOI: | 10.5539/jmr.v4n4p1 |
Popis: | Let $X$ be a metric continuum and $n$ a positive integer. Let $F_{n}(X)$ be the hyperspace of all nonempty subsets of $X$ with at most $n$ points, metrized by the Hausdorff metric. We said that $X$ has unique hyperspace $F_n(X)$ provided that, if $Y$ is a continuum and $F_n(X)$ is homeomorphic to $F_n(Y),$ then $X$ is homeomorphic to $Y.$ In this paper we study Peano continua $X$ that have unique hyperspace $F_n(X)$, for each $n\geq 4.$ Our result generalize all the previous known results on this subject. |
Databáze: | OpenAIRE |
Externí odkaz: |