Mitochondrial DNA Damage, Repair, Degradation and Experimental Approaches to Studying These Phenomena

Autor: Inna Shokolenko, Susan P. LeDoux, Glenn L. Wilson, Mikhail F. Alexeyev
Rok vydání: 2011
Předmět:
DOI: 10.5772/24361
Popis: In mammalian cells, genetic information is stored in two locations: in the nucleus and in mitochondria. Nuclear DNA (nDNA) is organized into chromosomes of which two sets are present per cell: one paternal, and one maternal. In contrast, mitochondrial DNA (mtDNA) inheritance is (with few exceptions) exclusively maternal, and is highly redundant, typically a few hundred to a few thousand copies per cell. In many (but not all, (Noll et al., 1990)) cell types the bulk of ATP is produced by oxidative phosphorylation (OXPHOS) in mitochondria. Since mtDNA encodes components of four out of five mitochondrial respiratory complexes, it is not surprising that alterations in mtDNA result in (mitochondrial) disease (Holt et al., 1988; Lestienne & Ponsot, 1988; Wallace et al., 1988). Apart from mitochondrial disease, mutations in mtDNA are linked to a spectrum of diseases including cancer, diabetes, cardiovascular diseases and neurodegenerative disorders, as well as the normal process of aging (Wallace, 2005). Importantly, it has been established that not only mtDNA mutations, but also reduction in the mtDNA copy number can be pathogenic (Clay Montier et al., 2009; Rotig & Poulton, 2009). Understanding cellular mechanisms for the maintenance of mtDNA integrity and copy number is, therefore, of utmost importance since it can provide targets for clinical interventions aimed at prevention and treatment of human disease.
Databáze: OpenAIRE