Thermal Management of Long-Length HTS Cable Systems

Autor: Jonathan Demko, William V. Hassenzahl
Rok vydání: 2011
Předmět:
Zdroj: IEEE Transactions on Applied Superconductivity. 21:957-960
ISSN: 1558-2515
1051-8223
DOI: 10.1109/tasc.2010.2093497
Popis: Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, high-current-carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energy-efficient operation. Here we extend the analysis of a super-conducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.
Databáze: OpenAIRE