Geochemical data for stream and groundwaters around the Casino Cu-Au-Mo porphyry deposit, Yukon (NTS 115 J/10 and 115 J/15)

Autor: J A Kidder, M B McClenaghan, M I Leybourne, M W McCurdy, P Pelchat, D Layton-Matthews, C E Beckett-Brown, A Voinot
Rok vydání: 2022
DOI: 10.4095/328862
Popis: This open file reports geochemical data for stream and groundwater samples collected around the Casino porphyry Cu-Au-Mo deposit, one of the largest and highest-grade deposits of its kind in Canada. The calc-alkaline porphyry is hosted in a Late Cretaceous quartz monzonite and associated breccias in the unglaciated region of west central Yukon. Water chemistry around the deposit was investigated because: (i) the deposit has not yet been disturbed by mining; (ii) the deposit was known to have metal-rich waters in local streams; and (iii) the deposit has atypically preserved ore zones. Stream water samples were collected at 22 sites and groundwater samples were collected from eight sites. Surface and groundwaters around the Casino deposit are anomalous with respect to Cd (up to 5.4 µg/L), Co (up to 64 µg/L), Cu (up to 1657 µg/L), Mo (up to 25 µg/L), As (up to 17 µg/L), Re (up to 0.7 µg/L), and Zn (up to 354 µg/L) concentrations. The stable isotopes of O and H of the groundwaters are essentially identical to the surface waters and plot close to the local and global meteoric water lines, indicating that the waters represent modern recharge, consistent with the generally low salinities of all the waters (total dissolved solids range from 98 to 1320 mg/L). Sulfur and Sr isotopes are consistent with proximal waters interacting with the Casino rocks and mineralization; a sulfide-rich bedrock sample from the deposit has delta-34S = -1.2 permille and proximal groundwaters are only slightly heavier (-0.3 to 3.1 permille). These geochemical and isotopic results indicate that surface water geochemistry is a suitable medium for mineral exploration for porphyry-style mineralization in the Yukon, and similar unglaciated regions in Canada. The atypical geochemical signature (Mo, Se, Re, As, Cu) of these types of deposits are typically reflected in the water chemistry and S isotopes provide a more local vectoring tool.
Databáze: OpenAIRE