Modelling of the impact of future climate changes on salt accumulation in paddocks of different soil types due to recycled water irrigation
Autor: | Golam Kibria, Dharma Hagare, Peter Dillon, Muhammad Muhitur Rahman, Basant L Maheshwari |
---|---|
Rok vydání: | 2015 |
Předmět: |
Hydrology
Irrigation Soil salinity 0208 environmental biotechnology Soil classification 02 engineering and technology 010501 environmental sciences Soil type 01 natural sciences Leaching model 020801 environmental engineering Loam Evapotranspiration Soil water Environmental science 0105 earth and related environmental sciences Water Science and Technology |
Zdroj: | Water Supply. 16:653-666 |
ISSN: | 1607-0798 1606-9749 |
DOI: | 10.2166/ws.2015.176 |
Popis: | Recycled water contains elevated amounts of salt compared with irrigation water originating from surface water sources. As such, recycled water, if used for irrigation over a long period of time may increase the root zone salinity. However, the phenomenon depends on variability of climatic condition and soil characteristics. In this study, a salt transport model, HYDRUS 1D, was used to predict long-term salt accumulation in two paddocks containing loamy sand and loam soil. The paddocks are located within Western Sydney University, Hawkesbury campus. Impact of rainfall on salt accumulation was studied with the data from the Global Climate Model for the years 2021–2040. The long-term (20 years) salt accumulation showed a cyclical pattern because of variation in rainfall and evapotranspiration. It was found that soil water electrical conductivity (ECSW) was 24% higher in loam soil paddock compared with that of loamy sand. Amount of leachate in the loamy sand paddock was 27% more than the amount leached from that of loam, which may pose a salinity risk to the groundwater if there is a perched aquifer in the field at a depth |
Databáze: | OpenAIRE |
Externí odkaz: |