Extreme Bloch Functions and Summation Methods for Bloch Functions

Autor: K. J. Wirths
Rok vydání: 1999
Předmět:
Zdroj: Constructive Approximation. 15:427-440
ISSN: 1432-0940
0176-4276
DOI: 10.1007/s003659900115
Popis: In this paper we construct Bloch functions F for which the set {z | e sup|ζ| < 1 |F'(ζ)| ( 1 - |ζ|2) = |F'(z)| ( 1 - |z|2)} is an analytic Jordan curve tangential to the unit disk in some points. It is proved that, using such functions, we can derive analogs to the Taylor expansion for Bloch functions in cases where the Taylor expansion does not converge.
Databáze: OpenAIRE