Popis: |
One of the most established region-based segmentation methods is the region based C-V model. This method formulates the image segmentation problem as a level set or improved level set clustering problem. However, the existing level set C-V model fails to perform well in the presence of noisy and incomplete data or when there is similarity between the objects and background, especially for clustering or segmentation tasks in medical images where objects appear vague and poorly contrasted in greyscale. In this paper, we modify the level set C-V model using a two-step modified Nash equilibrium approach. Firstly, a standard deviation using an entropy payoff approach is employed and secondly a two-step similarity clustering based approach is applied to the modified Nash equilibrium. One represents a maximum similarity within the clustered regions and the other the minimum similarity between the clusters. Finally, an improved C-V model based on a two-step modified Nash equilibrium is proposed to smooth the object contour during the image segmentation. Experiments demonstrate that the proposed method has good performance for segmenting noisy and poorly contrasting regions within medical images. |