CCZ equivalence of power functions
Autor: | Ulrich Dempwolff |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Applied Mathematics 020206 networking & telecommunications 0102 computer and information sciences 02 engineering and technology 01 natural sciences Computer Science Applications Finite field Integer 010201 computation theory & mathematics 0202 electrical engineering electronic engineering information engineering Power function Equivalence (measure theory) Mathematics |
Zdroj: | Designs, Codes and Cryptography. 86:665-692 |
ISSN: | 1573-7586 0925-1022 |
DOI: | 10.1007/s10623-017-0350-8 |
Popis: | Let $$F\simeq {{\mathrm{GF}}}(p^n)$$FźGF(pn) be a finite field of characteristic p and $$p_k$$pk and $$p_\ell $$pl be power functions on F defined by $$p_k(x)=x^k$$pk(x)=xk and $$p_\ell (x)=x^\ell $$pl(x)=xl respectively. We show, that $$p_k$$pk and $$p_\ell $$pl are CCZ equivalent, if and only if there exists a positive integer $$0\le a< n$$0≤a |
Databáze: | OpenAIRE |
Externí odkaz: |