On the Grothendieck construction for ∞-categories

Autor: Aaron Mazel-Gee
Rok vydání: 2019
Předmět:
Zdroj: Journal of Pure and Applied Algebra. 223:4602-4651
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2019.02.007
Popis: We provide, among other things: (i) a Bousfield–Kan formula for colimits in ∞-categories (generalizing the 1-categorical formula for a colimit as a coequalizer of maps between coproducts); (ii) ∞-categorical generalizations of Barwick–Kan's Theorem Bn and Dwyer–Kan–Smith's Theorem Cn (regarding homotopy pullbacks in the Thomason model structure, which themselves vastly generalize Quillen's Theorem B); and (iii) an articulation of the simultaneous and interwoven functoriality of colimits (or dually, of limits) for natural transformations and for pullback along maps of diagram ∞-categories.
Databáze: OpenAIRE