Water-rock interactions and origin of formation water in the Bohai Bay Basin: A case study of the Cenozoic Formation in Bonan Sag
Autor: | Zhuang Ruan, Yongshi Wang, Bingsong Yu, Wei Meng, Yuelin Feng, Tianxia An |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Interpretation. 9:T475-T493 |
ISSN: | 2324-8866 2324-8858 |
DOI: | 10.1190/int-2020-0181.1 |
Popis: | The faulted lacustrine Bohai Basin in eastern China contains abundant hydrocarbon resources. In these reservoirs, understanding the sandstone diagenesis and the resulting formation water provides a means to unravel the evolution processes in the basin. In most cases, the lack of isotopic and trace element analysis tests in this type of basin limits the research on the origin and evolution of formation water in this area. We have used multivariate statistical methods to classify the geochemical characteristics of the formation water for the Cenozoic Formation of Bonan Sag in the Bohai Bay Basin. Analysis of correlations among the evolution processes of different ions in different types of formation water provides an understanding of the primary factors influencing the ion content. We also evaluate the water-rock interactions of different types of formation water to evaluate their geologic significance, and we find three types. Type I formation water includes a mixture of river water, lake water, and atmospheric precipitation and exhibits weak water-rock interactions. Type II formation water contains primitive freshwater and brackish lake water that has undergone an evolution process similar to that of type I formation water, but that was followed by evaporation and concentration, the dissolution and precipitation of calcite and iron calcite, and feldspar dissolution. Type III formation water, which is a product of rock reconstruction, originates from saline lake sediment water. After undergoing evolution processes similar to those of types I and II, type III formation water is also affected by dissolution of evaporite, albite, dolomite, and iron dolomite. Thus, type III formation water is the product of water-rock interactions such as precipitation, SO42− reduction, and pyrite precipitation in which the water-rock reaction controls the development mechanism and characteristics of the reservoir space. |
Databáze: | OpenAIRE |
Externí odkaz: |