Constrained Support Vector Machines for photovoltaic in-feed prediction

Autor: Göran Andersson, Abhishek Rohatgi, Marcus Hildmann
Rok vydání: 2013
Předmět:
Zdroj: 2013 1st IEEE Conference on Technologies for Sustainability (SusTech).
DOI: 10.1109/sustech.2013.6617293
Popis: In this paper, we introduce a constrained Support Vector Machine (SVM) to predict photovoltaic (PV) in-feed. We derive the SVM algorithm with linear constraints and test the method on German PV in-feed with constraints reflecting physical boundaries. We show that the new algorithm shows a significant better performance than a constrained ordinary least squares (OLS) estimator.
Databáze: OpenAIRE