Caristi–Kirk and Oettli–Théra ball spaces and applications
Autor: | Piotr Błaszkiewicz, Alessandro Linzi, Hanna Ćmiel, Piotr Szewczyk |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Journal of Fixed Point Theory and Applications. 21 |
ISSN: | 1661-7746 1661-7738 |
DOI: | 10.1007/s11784-019-0729-4 |
Popis: | Based on the theory of ball spaces introduced by Kuhlmann and Kuhlmann, we introduce and study Caristi–Kirk and Oettli–Théra ball spaces. We show that if the underlying metric space is complete, then these have a very strong property: every ball contains a singleton ball. This fact provides quick proofs for several results which are equivalent to the Caristi–Kirk fixed point theorem, namely Ekeland’s variational principles, the Oettli–Théra theorem, Takahashi’s theorem and the flower petal theorem. |
Databáze: | OpenAIRE |
Externí odkaz: |