Caristi–Kirk and Oettli–Théra ball spaces and applications

Autor: Piotr Błaszkiewicz, Alessandro Linzi, Hanna Ćmiel, Piotr Szewczyk
Rok vydání: 2019
Předmět:
Zdroj: Journal of Fixed Point Theory and Applications. 21
ISSN: 1661-7746
1661-7738
DOI: 10.1007/s11784-019-0729-4
Popis: Based on the theory of ball spaces introduced by Kuhlmann and Kuhlmann, we introduce and study Caristi–Kirk and Oettli–Théra ball spaces. We show that if the underlying metric space is complete, then these have a very strong property: every ball contains a singleton ball. This fact provides quick proofs for several results which are equivalent to the Caristi–Kirk fixed point theorem, namely Ekeland’s variational principles, the Oettli–Théra theorem, Takahashi’s theorem and the flower petal theorem.
Databáze: OpenAIRE