Preparation of high molecular weight poly(vinyl alcohol) with high yield using low-temperature solution polymerization of vinyl acetate

Autor: Han Do Ghim, Jinwon Lee, Sung Soo Han, Sang Woo Yoo, Won Seok Lyoo, Wan Shik Ha, Jin Hyun Choi, Sung Il Hong
Rok vydání: 2001
Předmět:
Zdroj: Journal of Applied Polymer Science. 80:1003-1012
ISSN: 1097-4628
0021-8995
DOI: 10.1002/app.1183
Popis: Vinyl acetate (VAc) was solution-polymerized in tertiary butyl alcohol (TBA) and in dimethyl sulfoxide (DMSO) having low chain transfer constant at 30, 40, and 50°C, using a low temperature initiator, 2,2′-azobis(2,4-dimethylvaleronitrile) (ADMVN). The effects of polymerization temperature and initiator concentration were investigated in terms of polymerization behavior and molecular structures of poly(vinyl acetate) (PVAc) and corresponding poly(vinyl alcohol) (PVA) obtained by saponification with sodium hydroxide. The polymerization rates of VAc in TBA and in DMSO were proportional to the 0.49 and 0.72 powers of ADMVN concentration, respectively. For the same polymerization conditions, TBA was absolutely superior to DMSO in increasing the molecular weight of PVA. In contrast, TBA was inferior to DMSO in causing conversion to polymer, indicating that the initiation rate of VAc in TBA was lower than that in DMSO. These effects could be explained by a kinetic order of ADMVN concentration calculated using initial rate method and by an activation energy difference of polymerization obtained from the Arrhenius plot. Low-temperature solution polymerization of VAc in TBA or DMSO by adopting ADMVN proved successful in obtaining PVA of high molecular weight (number–average degree of polymerization (Pn): 4100–6100) and of high yield (ultimate conversion of VAc into PVAc: 55–80%) with diminishing heat generated during polymerization. In the case of bulk polymerization of VAc at the same conditions, maximum Pn and conversion of 5200–6200 and 20–30% was obtained, respectively. The Pn and lightness were higher, and the degree of branching was lower with PVA prepared from PVAc polymerized at lower temperatures in TBA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1003–1012, 2001
Databáze: OpenAIRE