Popis: |
The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion. |