On a question of $C_c(X)$
Autor: | A. R. Olfati |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Commentationes Mathematicae Universitatis Carolinae. 57:253-260 |
ISSN: | 1213-7243 0010-2628 |
DOI: | 10.14712/1213-7243.2015.161 |
Popis: | In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova 129 (2013), 47--69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon_0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph_0$-compactness. |
Databáze: | OpenAIRE |
Externí odkaz: |