Growth Hormone-Releasing Hormone: Synthesis and Signaling

Autor: Steven T. Suhr, Paul A. Godfrey, David J. Kulik, Kelly E. Mayo, Jason O. Rahal
Rok vydání: 1995
Předmět:
DOI: 10.1016/b978-0-12-571150-0.50007-x
Popis: The molecular characterization of GHRH and the GHRH receptor provides a framework for understanding the hypothalamic regulation of pituitary somatotroph function. The signaling events discerned from our investigation of GHRH receptor structure and function form the basis of a model for GHRH action, which is shown in Fig. 20. GHRH interaction with its seven transmembrane domain Gs-coupled receptor on the somatotroph (step 1) leads to the release of growth hormone from secretory granules (step 2), which is likely to involve a G protein-mediated interaction with ion channels, and to a stimulation of intracellular cAMP accumulation (step 3) (Mayo, 1992; Lin et al., 1992; Gaylinn et al., 1993). In several cell types tested, elevated cAMP leads to the phosphorylation and activation of the transcription factor CREB by protein kinase A (Gonzalez and Montminy, 1989; Sheng et al., 1991), and one target gene for CREB action is the pituitary-specific transcription factor Pit-1 or GHF-1 (step 4) (Bodner et al., 1988; Ingraham et al., 1988; McCormick et al., 1990). Pit-1 is a prototypic POU domain protein that is required for the appropriate regulation of the growth hormone gene in somatotroph cells, thus providing a pathway by which a GHRH signal can lead to increased growth hormone synthesis in the pituitary (step 5). In addition, Pit-1 is likely to directly regulate the synthesis of the GHRH receptor (step 6), in that the receptor is not expressed in the pituitary of dw/dw mice that lack functional Pit-1 (Lin et al., 1992), and a cotransfected Pit-1 expression construct can activate the GHRH receptor promoter in transiently transfected CV1 cells (Lin et al., 1993). It remains to be determined whether additional direct regulation of the GHRH receptor gene in response to the cAMP signaling pathway occurs (step 7). The inhibitory peptide somatostatin presumably interacts with this same signaling pathway through G protein-mediated suppression of the cAMP pathway (Tallent and Reisine, 1992; Bell and Reisine, 1993). In agreement with the importance of this signaling system for normal growth, a transgene encoding a nonphosphorylatable mutant CREB protein, which blocks the function of the endogenous CREB protein, is able to cause somatotroph hypoplasia and dwarfism in mice when its expression is targeted to pituitary somatotrophs (Struthers et al., 1991). Several steps in the signaling pathway leading to growth hormone secretion are subject to disruption, resulting in growth hormone deficiency.(ABSTRACT TRUNCATED AT 400 WORDS)
Databáze: OpenAIRE