Langlands reciprocity for certain Galois extensions
Autor: | Peng-Jie Wong |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Algebra and Number Theory Non-abelian class field theory Mathematics::Number Theory Fundamental theorem of Galois theory 010102 general mathematics Langlands dual group Galois module 01 natural sciences Mathematics::Group Theory symbols.namesake Langlands program Local Langlands conjectures 0103 physical sciences Artin L-function symbols 010307 mathematical physics Artin reciprocity law 0101 mathematics Mathematics::Representation Theory Mathematics |
Zdroj: | Journal of Number Theory. 178:126-145 |
ISSN: | 0022-314X |
DOI: | 10.1016/j.jnt.2017.02.003 |
Popis: | In this note, we study Artin's conjecture via group theory and derive Langlands reciprocity for certain solvable Galois extensions of number fields, which extends the previous work of Arthur and Clozel. In particular, we show that all nearly nilpotent groups and all groups of order less than 60 are of automorphic type. |
Databáze: | OpenAIRE |
Externí odkaz: |