String‐Based Synthesis of Structured Shapes

Autor: Leif Kobbelt, Javor Kalojanov, Isaak Lim, Niloy J. Mitra
Rok vydání: 2019
Předmět:
Zdroj: Computer Graphics Forum. 38:27-36
ISSN: 1467-8659
0167-7055
DOI: 10.1111/cgf.13616
Popis: We propose a novel method to synthesize geometric models from a given class of context‐aware structured shapes such as buildings and other man‐made objects. The central idea is to leverage powerful machine learning methods from the area of natural language processing for this task. To this end, we propose a technique that maps shapes to strings and vice versa, through an intermediate shape graph representation. We then convert procedurally generated shape repositories into text databases that, in turn, can be used to train a variational autoencoder. The autoencoder enables higher level shape manipulation and synthesis like, for example, interpolation and sampling via its continuous latent space. We provide project code and pre‐trained models.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje