Phosphorus Speciation and Nutrient Stoichiometry in the Soil-Plant System During Primary Ecological Restoration of Copper Mine Tailings
Autor: | Zhangjun Shen, Zhen Zhang, Yu-Peng Wang |
---|---|
Rok vydání: | 2018 |
Předmět: |
0106 biological sciences
Rhizosphere biology Phosphorus Soil Science chemistry.chemical_element 04 agricultural and veterinary sciences biology.organism_classification 01 natural sciences Tailings Phytoremediation Nutrient chemistry Environmental chemistry Soil water 040103 agronomy & agriculture 0401 agriculture forestry and fisheries Miscanthus floridulus Alkaline phosphatase 010606 plant biology & botany |
Zdroj: | Pedosphere. 28:530-541 |
ISSN: | 1002-0160 |
DOI: | 10.1016/s1002-0160(18)60031-1 |
Popis: | The effects of plant vegetation on phosphorus (P) speciation, pH, total carbon concentration, total nitrogen concentration, and alkaline phosphatase activities were investigated to explore the P uptake strategy of plants in low-P soil and to determine the nutrient stoichiometric ratio changes in the rhizosphere of plants (Imperata cylindrica, Miscanthus floridulus, Zoysia sinica, Artemisia lavandulaefolia, Indigofera pseudotinctoria, and Conyza canadensis) which had grown for approximately 15 years in copper mine tailings, East China. The results showed that the average pH values in the rhizosphere decreased by 0.06–1.37 compared with those in the non-rhizosphere. The alkaline phosphatase activities of the rhizosphere were significantly higher than those in the non-rhizosphere. The mean concentrations of aluminum (Al)- and iron (Fe)-bound P and Ca2-P (CaHPO4) in the rhizosphere of all plants were 5.4% to 87.7%, 49.2% to 214.2%, and 86.6% to 147.6% higher than those in the non-rhizosphere, respectively. Except for Ca8-P (Ca8H2(PO4)6) and Ca10-P (Ca10(PO4)6(OH)2) in the rhizosphere, all kinds of inorganic P forms were negatively correlated with pH. Significant correlation was also observed among the concentrations of dominant forms of inorganic P, C, and N and alkaline phosphatase activities in the rhizosphere. Among the studied species, I. pseudotinctoria showed the most significant effect on enhancing soil available P concentration. The stoichiometric ratios of C:P and N:P were apparently higher in the rhizosphere than the non-rhizosphere, whereas these ratios were far below the ratios commonly observed in Chinese soils. These results indicated that the plant growth effectively affected P fractions possibly by changing pH, C and N concentrations, and alkaline phosphatase activity, in the rhizosphere in copper mine tailings. |
Databáze: | OpenAIRE |
Externí odkaz: |