The sharp affine $$L^2$$ L 2 Sobolev trace inequality and variants

Autor: P. De Nápoli, Julian Haddad, Carlos Hugo Jiménez, Marcos Montenegro
Rok vydání: 2017
Předmět:
Zdroj: Mathematische Annalen. 370:287-308
ISSN: 1432-1807
0025-5831
DOI: 10.1007/s00208-017-1548-9
Popis: We establish a sharp affine $$L^p$$ Sobolev trace inequality by using the $$L_p$$ Busemann–Petty centroid inequality. For $$p = 2$$ , our affine version is stronger than the famous sharp $$L^2$$ Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers in this case. For this new inequality, no Euclidean geometric structure is needed.
Databáze: OpenAIRE