Popis: |
Abstract: Humanity has been battling with tuberculosis (TB) for a long period, and despite the availability of drugs well-known to act against the deadly microbe, the menace is still very far from reaching its end. Moreover, problems related to TB chemotherapy, such as lengthy treatment peri-ods leading to poor patient compliance, increasing drug resistance, and association with another deadlier disease HIV-AIDS, make the situation alarming, thereby pressing the need for the discov-ery of new potent drugs urgently. Therefore, a drug target that is essential for survival and exclusive to M. tuberculosis presents a promising platform to explore novel molecules against the microor-ganism for better pathogen clearance with minimal toxicity. The shikimate pathway that leads to the synthesis of essential aromatic amino acids is one such attractive target. Shikimate kinase, the fifth enzyme of this pathway, converts shikimate to shikimate-3-phosphate by using ATP as a co-substrate. Targeting shikimate kinase could be an effective strategy in light of its essentiality and absence of any homologue in mammals. This review discusses different strategies adopted for dis-covering novel compounds or scaffolds targeting M. tuberculosis shikimate kinase (MtSK) in vitro. The application of substrate analogues, their structure, and ligand-based approach for screening a library of anti-mycobacterial compounds, marine-derived molecules, and commercially available libraries have yielded promising MtSK inhibitors exhibiting micro-molar activities. To develop these leads into future drugs with minimum off-target effects on the host microenvironment, the molecules need to be structurally optimized for improved activities against enzymes and whole-cell organisms. |