Performance Comparisons of DP-16QAM and Duobinary-Shaped DP-QPSK for Optical Systems With 4.1 Bit/s/Hz Spectral Efficiency
Autor: | Peter A. Andrekson, Jianqiang Li, Magnus Karlsson, Ekawit Tipsuwannakul |
---|---|
Rok vydání: | 2012 |
Předmět: |
Physics
Orthogonal frequency-division multiplexing business.industry Spectral efficiency Atomic and Molecular Physics and Optics Optics Wavelength-division multiplexing Phase noise Bit error rate Electronic engineering business Quadrature amplitude modulation Communication channel Phase-shift keying |
Zdroj: | Journal of Lightwave Technology. 30:2307-2314 |
ISSN: | 1558-2213 0733-8724 |
DOI: | 10.1109/jlt.2012.2196976 |
Popis: | This paper, for the first time, experimentally presents direct comparisons of two 25 GHz spaced wavelength division multiplexing (WDM) systems using conventional dual-polarization (DP) 16-ary quadrature amplitude modulation and duobinary-shaped DP-quadrature phase shift keying (QPSK) modulation. Both systems operate at the same bit rate per channel of 112 Gbit/s, yielding a spectral efficiency of 4.1 bit/s/Hz. The comparisons are conducted for three different cases, i.e., the back-to-back sensitivity, the nonlinear tolerance over a 640-km standard single-mode fiber link, and the phase-noise tolerance (by means of simulations). The results show that the duobinary-shaped DP-QPSK system not only provides a 3.4 dB superior back-to-back sensitivity, but also exhibits a 3 dB higher tolerance against nonlinear impairments after 640 km transmission with three WDM channels. In addition, the numerical results indicate that both investigated systems provide similar tolerances to the laser phase noise given that the block length used in the carrier phase estimation is optimized. |
Databáze: | OpenAIRE |
Externí odkaz: |