Continuos Parameterization of the Median Surface of an Ellipsoidal Shell and Its Geometric Parameters

Autor: N. A. Gureeva, A. P. Nikolaev, Mikhail Yu. Klochkov
Rok vydání: 2020
Předmět:
Zdroj: Mathematical Physics and Computer Simulation. :5-12
ISSN: 2587-6325
DOI: 10.15688/mpcm.jvolsu.2020.1.1
Popis: When analyzing the stress-strain state of thin-walled structural elements that have the shape of an ellipsoid, it becomes necessary to calculate the geometric characteristics of the ellipsoidal surface. When using the canonical ellipsoid equation, regions of uncertainty appear in the Cartesian coordinate system at the intersection points of the ellipsoid surface with the horizontal coordinate plane. To exclude these areas of uncertainty, we propose an expression of the radius vector of an ellipsoidal surface whose projections are functions of two parametric representations in mutually perpendicular planes. One of the planes is the vertical plane XOZ, and the other plane is the plane perpendicular to the axis O at the point with the x coordinate. The parameter T of the ellipse obtained from the intersection of the ellipsoid with the XOZ plane was chosen as the argument of the first parametric function. The argument of the second parametric function t is the parameter of an ellipse formed as a result of the intersection of an ellipsoidal surface with a plane perpendicular to the abscissa axis at a distance of x from the origin. The proposed representation of the ellipsoidal surface allowed us to exclude uncertainties at the intersection points of the ellipsoid with the HOWE coordinate plane. By differentiating the proposed radius-vector expression at an arbitrary point on an ellipsoidal surface, we obtain relations for the basis vectors of an arbitrary point and their derivatives represented by components in the same local basis. These relations are necessary for the development of algorithms for numerical analysis of deformation processes of engineering structures that have ellipsoidal surfaces.
Databáze: OpenAIRE