The Teichmüller space of a countable set of points on a Riemann surface
Autor: | Masahiko Taniguchi, Ege Fujikawa |
---|---|
Rok vydání: | 2017 |
Předmět: |
Teichmüller space
Discrete mathematics Mathematics::Complex Variables Riemann surface 010102 general mathematics Second-countable space 0102 computer and information sciences 01 natural sciences Cosmic space symbols.namesake 010201 computation theory & mathematics symbols Countable set Geometry and Topology 0101 mathematics Schwarzian derivative Mathematics |
Zdroj: | Conformal Geometry and Dynamics of the American Mathematical Society. 21:64-77 |
ISSN: | 1088-4173 |
DOI: | 10.1090/ecgd/301 |
Popis: | We introduce the quasiconformal deformation space of an ordered countable set of an infinite number of points on a Riemann surface and give certain conditions under which it admits a complex structure via Teichmüller spaces of associated subsurfaces with the complement of the set of points. In a similar fashion, we give another definition of the quasiconformal deformation space of a finitely generated Kleinian group. |
Databáze: | OpenAIRE |
Externí odkaz: |