Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential

Autor: Muhammad Riaz, Muhammad Ajmal, Atif Naseem, Nusrat Jabeen, Zahoor H. Farooqi, Khalid Mahmood, Abid Ali, Lubna Rasheed, Ahmad Nauman Shah Saqib
Rok vydání: 2022
Předmět:
Zdroj: Zeitschrift für Physikalische Chemie. 236:1441-1460
ISSN: 2196-7156
0942-9352
Popis: Poly(N-isopropyl acrylamide-co-2-acrylamido methyl propane sulfonic acid) hydrogel was prepared and used as matrix for the fabrication of nickel and copper nanoparticles. Nickel and copper nanoparticles were fabricated via in situ reduction of Ni (II) and Cu (II) ions within the hydrogel matrix. The manufactured hydrogel and its corresponding composites with Ni and Cu nanoparticles were characterized by FTIR, XRD, EDX, TEM, and TGA. Thermal stability of hydrogel was found to be increased upon fabricating with metal nanoparticles. The hydrogel showed ability to absorb water 63 times of its weight in dried form. The Ni and Cu nanoparticles were observed to be well dispersed, spherical in shape and most of them were having diameters in the range of 12.5 to 38.8 nm and 58 to 102 nm, respectively. The as-prepared hydrogel-nickel and hydrogel-Cu nanocomposite were used as catalysts for the reduction of a toxic pollutant 4-nitrophenol. At 25 °C, the reduction of 4-NP was found to proceed with apparent rate constant (k app) of 0.107 and 0.122 min−1 in the presence of composite containing Ni and Cu nanoparticles, respectively. However, k app was increased with corresponding increase in temperature and its maximum value was found to be 0.815 min−1 at 88 °C with catalyst containing Ni nanoparticles. The formation of well dispersed Ni and Cu nanoparticles in the prepared hydrogel reflected that this hydrogel system can act as efficient stabilizing agent along with acting as a reactor medium. Recycling potential of catalysts was studied for five successive cycles.
Databáze: OpenAIRE