Basis Properties of Root Functions of a Vibrational Boundary Value Problem with Boundary Conditions Depending on the Spectral Parameter
Autor: | Z. S. Aliyev, F. M. Namazov |
---|---|
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Partial differential equation Basis (linear algebra) General Mathematics 010102 general mathematics Mathematical analysis Root (chord) 02 engineering and technology Space (mathematics) 01 natural sciences 020901 industrial engineering & automation Homogeneous Ordinary differential equation Boundary value problem 0101 mathematics Lumped mass Analysis Mathematics |
Zdroj: | Differential Equations. 56:969-975 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s0012266120080017 |
Popis: | We study the basis properties of root functions of a spectral problem describing the bending vibrations of a homogeneous rod with a longitudinal force acting in its cross sections. Both rod ends are elastically fixed and either there is a lumped mass or a follower force acts on each of the ends. We establish a sufficient condition for the basis property of the system of root functions of this problem in the space $$L_p (0, 1)$$ , $$1 |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |