A point in a $$nd$$ n d -polytope is the barycenter of $$n$$ n points in its $$d$$ d -faces

Autor: Michael Gene Dobbins
Rok vydání: 2014
Předmět:
Zdroj: Inventiones mathematicae. 199:287-292
ISSN: 1432-1297
0020-9910
DOI: 10.1007/s00222-014-0523-2
Popis: Using equivariant topology, we prove that it is always possible to find $$n$$ points in the $$d$$ -dimensional faces of a $$nd$$ -dimensional convex polytope $$P$$ so that their center of mass is a target point in $$P$$ . Equivalently, the $$n$$ -fold Minkowski sum of a $$nd$$ -polytope’s $$d$$ -skeleton is that polytope scaled by $$n$$ . This verifies a conjecture by Takeshi Tokuyama.
Databáze: OpenAIRE