A point in a $$nd$$ n d -polytope is the barycenter of $$n$$ n points in its $$d$$ d -faces
Autor: | Michael Gene Dobbins |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Inventiones mathematicae. 199:287-292 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/s00222-014-0523-2 |
Popis: | Using equivariant topology, we prove that it is always possible to find $$n$$ points in the $$d$$ -dimensional faces of a $$nd$$ -dimensional convex polytope $$P$$ so that their center of mass is a target point in $$P$$ . Equivalently, the $$n$$ -fold Minkowski sum of a $$nd$$ -polytope’s $$d$$ -skeleton is that polytope scaled by $$n$$ . This verifies a conjecture by Takeshi Tokuyama. |
Databáze: | OpenAIRE |
Externí odkaz: |