Popis: |
This chapter discusses two situations where the combinatorics behind k-characters appears with no apparent connection to group representation theory. In geometry a Frobenius n-homomorphism is defined essentially in terms of the combinatorics of k-characters. Buchstaber and Rees generalized the result of Gelfand and Kolmogorov which reconstructs a geometric space from the algebra of functions on the space and used Frobenius n-homomorphisms which arise naturally from k-characters. Incidentally they show that given commutative algebras A and B, with certain obvious restrictions on B, a homomorphism from the symmetric product Sn(A) to B arises from a Frobenius n-homomorphism. |