Ovalopodium rosalinum sp. nov., Planopodium haveli gen. nov, sp. nov., Planopodium desertum comb. nov. and new insights into phylogeny of the deeply branching members of the order Himatismenida (Amoebozoa)

Autor: Eckhard Völcker, Jan Pawlowski, Steffen Clauß, Alexander Kudryavtsev
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Systematic and Evolutionary Microbiology. 71
ISSN: 1466-5034
1466-5026
DOI: 10.1099/ijsem.0.004737
Popis: The order Himatismenida (Amoebozoa, Discosea) comprises naked amoebae with an organic coat that is located on the dorsal surface of the cell. The phylogenetic relationships among deeply branching genera of the Himatismenida are unclear, as data on the species diversity of the himatismenid genera is largely restricted to the derived genus Cochliopodium. Here, we describe two new amoeba species that branch at the base of the order Himatismenida, evidenced by SSU rRNA gene and multigene analyses. Among them, a freshwater species Planopodium haveli gen. nov., sp. nov. has a dorsal cell coat consisting of flat, oval scales. This species forms a clade at the base of the Himatismenida, and the previously described Ovalopodium desertum, its closest relative, is transferred into the new genus as Planopodium desertum comb. nov. Although the two species are barely distinguishable by their sequence data, they are clearly distinct in morphology. Using this data, we can report the first evidence of a dorsal cell coat consisting of scales outside of the genus Cochliopodium. The other species has a marine origin and branches deeply, close to the root of the phylogenetic tree of Himatismenida. Based on the morphology of this amoeba, it should be described as Ovalopodium rosalinum sp. nov., a new species of the genus Ovalopodium. Analyses of the phylogenetic relationships and the ultrastructure of the deeply branching himatismenids, together with several of the newly obtained gene sequences of Parvamoeba and Cochliopodium, suggest that some elements of the dorsal cell coat of Ovalopodium may be ancestral for Himatismenida and have been partly retained in various more derived species of this clade, in particular, Cochliopodium gallicum. Although actin and Cox1 gene data do not resolve the higher-level relationships in Himatismenida, they correspond to the grouping of species within most genera.
Databáze: OpenAIRE