On the polytope faces of the graph approximation problem
Autor: | I. V. Urazova, R. Yu. Simanchev |
---|---|
Rok vydání: | 2015 |
Předmět: |
Discrete mathematics
medicine.medical_specialty Mathematics::Combinatorics Birkhoff polytope Applied Mathematics Polyhedral combinatorics MathematicsofComputing_NUMERICALANALYSIS Uniform k 21 polytope Industrial and Manufacturing Engineering Combinatorics Happy ending problem TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY Cross-polytope Convex polytope medicine Mathematics::Metric Geometry Ehrhart polynomial Vertex enumeration problem MathematicsofComputing_DISCRETEMATHEMATICS Mathematics |
Zdroj: | Journal of Applied and Industrial Mathematics. 9:283-291 |
ISSN: | 1990-4797 1990-4789 |
DOI: | 10.1134/s1990478915020143 |
Popis: | We study the polytope of the graph approximation problem. Some polyhedral relaxation of this polytope is built. We describe the class of valid inequalities for this polytope among which the inequalities that generate the facets are allocated. |
Databáze: | OpenAIRE |
Externí odkaz: |