Role of Na-Ca exchange in the action potential changes caused by drive in cardiac myocytes exposed to different Ca2+loads
Autor: | Mario Vassalle, Qi-Ying Liu |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | Canadian Journal of Physiology and Pharmacology. 77:383-397 |
ISSN: | 1205-7541 0008-4212 |
Popis: | The role of Na-Ca exchange in the membrane potential changes caused by repetitive activity ("drive") was studied in guinea pig single ventricular myocytes exposed to different [Ca2+]o. The following results were obtained. (i) In 5.4 mM [Ca2+]o, the action potentials (APs) gradually shortened during drive, and the outward current during a train of depolarizing voltage clamp steps gradually increased. (ii) The APs shortened more and were followed by a decaying voltage tail during drive in the presence of 5 mM caffeine; the outward current became larger and there was an inward tail current on repolarization during a train of depolarizing steps. (iii) These effects outlasted drive so that immediately after a train of APs, currents were already bigger and, after a train of steps, APs were already shorter. (iv) In 0.54 mM [Ca2+]o, the above effects were much smaller. (v) In high [Ca2+]oAPs were shorter and outward currents larger than in low [Ca2+]o. (vi) In 10.8 mM [Ca2+]o, both outward and inward currents during long steps were exaggerated by prior drive, even with steps (+80 and +120 mV) at which there was no apparent inward current identifiable as ICa. (vii) In 0.54 mM [Ca2+]o, the time-dependent outward current was small and prior drive slightly increased it. (viii) During long steps, caffeine markedly increased outward and inward tail currents, and these effects were greatly decreased by low [Ca2+]o. (ix) After drive in the presence of caffeine, Ni2+decreased the outward and inward tail currents. It is concluded that in the presence of high [Ca2+]odrive activates outward and inward Na-Ca exchange currents. During drive, the outward current participates in the plateau shortening and the inward tail current in the voltage tail after the action potential.Key words: ventricular myocytes, repetitive activity, outward and inward Na-Ca exchange currents, caffeine, nickel. |
Databáze: | OpenAIRE |
Externí odkaz: |