Homogenization of an Eigenvalue Problem in a Two-Component Domain with Interfacial Jump

Autor: Eleanor Gemida, Editha C. Jose, Patrizia Donato
Rok vydání: 2021
Předmět:
Zdroj: Emerging Problems in the Homogenization of Partial Differential Equations ISBN: 9783030620295
DOI: 10.1007/978-3-030-62030-1_5
Popis: This work concerns the asymptotic behaviour of the eigenvalues and eigenvectors of a problem posed on an e-periodic two-component domain with an imperfect interface. We obtain characterizations of the eigenvalues and give homogenization results using the periodic unfolding method. The eigenvalues of the e-problem converge to the corresponding eigenvalues of the limit problem, for the whole sequence. The same convergence result is obtained for the corresponding eigenspaces. The convergence for the whole sequence of the corresponding eigenvectors is achieved when the associated homogenized eigenvalue is simple.
Databáze: OpenAIRE