Boundedness of the number of nodal domains for eigenfunctions of generic Kaluza–Klein 3-folds

Autor: Junehyuk Jung, Steve Zelditch
Rok vydání: 2020
Předmět:
Zdroj: Annales de l'Institut Fourier. 70:971-1027
ISSN: 1777-5310
DOI: 10.5802/aif.3329
Popis: This article concerns the number of nodal domains of eigenfunctions of the Laplacian on special Riemannian $3$-manifolds, namely nontrivial principal $S^1$ bundles $P \to X$ over Riemann surfaces equipped with certain $S^1$ invariant metrics, the Kaluza-Klein metrics. We prove for generic Kaluza-Klein metrics that any Laplacian eigenfunction has exactly two nodal domains unless it is invariant under the $S^1$ action. We also construct an explicit orthonormal eigenbasis on the flat $3$-torus $\mathbb{T}^3$ for which every non-constant eigenfunction belonging to the basis has two nodal domains.
Databáze: OpenAIRE