THE FIELD OF p-ADIC NUMBERS WITH A PREDICATE FOR THE POWERS OF AN INTEGER

Autor: Nathanaël Mariaule
Rok vydání: 2017
Předmět:
Zdroj: The Journal of Symbolic Logic. 82:166-182
ISSN: 1943-5886
0022-4812
Popis: In this paper, we prove the decidability of the theory of ℚp in the language (+, −,⋅, 0, 1, Pn(n ∈ ℕ)) expanded by a predicate for the multiplicative subgroup nℤ (where n is a fixed integer). There are two cases: if $v_p \left( n \right) > 0$ then the group determines a cross-section and we get an axiomatization of the theory and a result of quantifier elimination. If $v_p \left( n \right) = 0$, then we use the Mann property of the group to get an axiomatization of the theory.
Databáze: OpenAIRE