Real cubic polynomials with a fixed point of multiplicity two

Autor: Monireh Akbari, Maryam Rabii
Rok vydání: 2015
Předmět:
Zdroj: Indagationes Mathematicae. 26:64-74
ISSN: 0019-3577
DOI: 10.1016/j.indag.2014.06.001
Popis: The aim of this paper is to study the dynamics of the real cubic polynomials that have a fixed point of multiplicity two. Such polynomials are conjugate to f a ( x ) = a x 2 ( x − 1 ) + x , a ≠ 0 . We will show that when a > 0 and x ≠ 1 , then | f a n ( x ) | converges to 0 or ∞ and, if a 0 and a belongs to a special subset of the parameter space, then there is a closed invariant subset Λ a of R on which f a is chaotic.
Databáze: OpenAIRE