Real cubic polynomials with a fixed point of multiplicity two
Autor: | Monireh Akbari, Maryam Rabii |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Indagationes Mathematicae. 26:64-74 |
ISSN: | 0019-3577 |
DOI: | 10.1016/j.indag.2014.06.001 |
Popis: | The aim of this paper is to study the dynamics of the real cubic polynomials that have a fixed point of multiplicity two. Such polynomials are conjugate to f a ( x ) = a x 2 ( x − 1 ) + x , a ≠ 0 . We will show that when a > 0 and x ≠ 1 , then | f a n ( x ) | converges to 0 or ∞ and, if a 0 and a belongs to a special subset of the parameter space, then there is a closed invariant subset Λ a of R on which f a is chaotic. |
Databáze: | OpenAIRE |
Externí odkaz: |