Rate of Convergence of Modified Schurer-Type q-Bernstein Kantorovich Operators
Autor: | Purshottam Narain Agrawal, Manjari Sidharth |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Springer Proceedings in Mathematics & Statistics ISBN: 9788132224846 |
DOI: | 10.1007/978-81-322-2485-3_19 |
Popis: | Lin (J. Inequal. Appl. 465, 2014 [10]) introduced a new modified Schurer-type q-Bernstein Kantorovich operators and discussed a local approximation theorem and the statistical convergence of these operators. In this paper we study the rate of convergence by means of the first-order modulus of continuity, Lipschitz class function, the modulus of continuity of the first-order derivative and the Voronovskaja-type theorem. |
Databáze: | OpenAIRE |
Externí odkaz: |