Delay Equations with Non-negativity Constraints Driven by a Hölder Continuous Function of Order $\beta \in \left(\frac13,\frac12\right)$
Autor: | Carles Rovira, David Márquez-Carreras, Mireia Besalú |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Potential Analysis. 41:117-141 |
ISSN: | 1572-929X 0926-2601 |
DOI: | 10.1007/s11118-013-9365-6 |
Popis: | In this note we prove an existence and uniqueness result of solution for multidimensional delay differential equations with normal reflection and driven by a Holder continuous function of order \(\beta \in (\frac13,\frac12)\). We also obtain a bound for the supremum norm of this solution. As an application, we get these results for stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H \(\in (\frac13,\frac12)\). |
Databáze: | OpenAIRE |
Externí odkaz: |