A receiver with iterative soft decision and forward error correction

Autor: Hiroshi Kubo, Norihiko Morinaga, Takayuki Nagayasu, Tadashi Fujino, Keishi Murakami
Rok vydání: 2000
Předmět:
Zdroj: Electronics and Communications in Japan (Part I: Communications). 83:76-85
ISSN: 1520-6424
8756-6621
DOI: 10.1002/(sici)1520-6424(200009)83:9<76::aid-ecja8>3.0.co;2-w
Popis: As a receiving method suitable for channels with intersymbol interference such as frequency selective fading, a method is proposed in which the soft decision using the hard decision sequence generated from the data after forward error correction (FEC) is alternated with FEC. In the conventional receiver with a serial configuration of the equalizer, deinverter, and decoder, the performance of the equalizer significantly affects the overall receiver characteristics. Hence, the performance of the equalizer is emphasized. On the other hand, in the proposed method the error generated in the initial equalization can be corrected by repetitive soft decision and FEC. Therefore, the method does not strongly depend on the performance of the equalizer used in the initial equalization. Hence, even if an equalizer requiring a smaller amount of process with a somewhat degraded performance is used in the initial equalization in place of a high-performance equalizer, the amount of process for the entire receiver can be decreased without degrading the characteristics of the proposed method very much. In this paper, the characteristics of the proposed method are evaluated by computer simulation. The following are the confirmed conclusions. (1) The proposed method using the maximum-likelihood sequence estimation (MLSE) as the equalization has superior BER characteristics over the conventional method using a maximum a posteriori (MAP) equalizer and MLSE. (2) In a transmission channel with a large delay spread, the degradation of the BER characteristics of the proposed method using the delayed decision-feedback sequence estimation (DDFSE) in place of MLSE is very slight while the amount of processing can be reduced substantially from that in the conventional method using MLSE. © 2000 Scripta Technica, Electron Comm Jpn Pt 1, 83(9): 76–85, 2000
Databáze: OpenAIRE