Congruence subgroups of the minimal covolume arithmetic Kleinian group
Autor: | Amir Džambić |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 80:265-273 |
ISSN: | 1865-8784 0025-5858 |
DOI: | 10.1007/s12188-010-0037-9 |
Popis: | We consider the problem of finding the normal subgroups of the orientation preserving subgroup Δ+ of the [3,5,3]-Coxeter group with the factor group isomorphic to $\operatorname{\mathrm{PSL}}_{2}(\mathbb {F}_{q})$ . We identify all such groups with particular congruence subgroups of an arithmetic subgroup of PSL 2(ℂ) derived from a quaternion algebra over a quartic field. The result can be interpreted as a generalization of the Macbeath’s result on the classification of finite linear groups as Hurwitz groups to 3-dimensional hyperbolic space. |
Databáze: | OpenAIRE |
Externí odkaz: |