A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH2/MCA/MWCNT@rGONR nanocomposites

Autor: Mei Yang, Xin Yao, Jinhui Shen, Huanbao Fa, Qingyan Liu, Changjun Hou
Rok vydání: 2020
Předmět:
Zdroj: Analytical Methods. 12:4967-4976
ISSN: 1759-9679
1759-9660
Popis: In this work, we designed and synthesized a nanocomposite comprising an amine-functionalized metal organic framework (UiO-66-NH2), a multiwalled carbon nanotube@reduced graphene oxide nanoribbon (MWCNT@rGONR) and a covalent organic framework (COF) synthesized using melamine and cyanuric acidmonomers via polycondensation (represented by MCA). The UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite was used as a sensitive platform for an electrochemical aptasensor to detect kanamycin (kana). Owing to the rich chemical functionality, amino-rich structure and excellent electrochemical activity, the cDNA strands with terminal amino groups can not only anchor over the UiO-66-NH2/MCA/MWCNT@rGONR surface but also penetrate into the interior of porous UiO-66-NH2/MCA/MWCNT@rGONR networks. The characterization of the UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite was performed by scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). Furthermore, cyclic voltammetry (CV) and square wave voltammetry (SWV) were employed for the electrochemical performance study of this biosensor. The results indicated that the UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite exhibited high bioaffinity toward the aptamer and the lowest limit of detection at 13 nM (S/N = 3) within a linearity of the kana concentration of 25-900 nM. In addition, it possessed great repeatability, stability and selectivity and obtained satisfactory recovery results in the real analysis of fish meat and milk, indicating the great potential for analytical measurements in food safety.
Databáze: OpenAIRE