An interesting way to partition a number

Autor: Manfred Kuechler
Rok vydání: 1999
Předmět:
Zdroj: Information Processing Letters. 71:141-148
ISSN: 0020-0190
DOI: 10.1016/s0020-0190(99)00090-3
Popis: This note reports an interesting kind of partition, called an s-partition, for a natural number n. Each cell in an s-partition has an element of the form 2r−1. We give a recurrence relation to enumerate all s-partitions of n and also derive an upper bound on the number of possible s-partitions. We define a relation of domination to get a lexical order on s-partitions and show that a unique partition, called d-partition, dominates all other s-partitions of n. A d-partition has the smallest cardinality of O(logn) and can be generated in O(logn) steps. A d-partition may have a potential application in cryptography as we demonstrate its use in a distributed algorithm to compute an mod m, a key computation intensive step in many cryptographic algorithms.
Databáze: OpenAIRE