On the Topological Entropy of Nonautonomous Differential Equations
Autor: | Le Duc Nhien, Le Huy Tien |
---|---|
Rok vydání: | 2019 |
Předmět: |
Lyapunov function
Pure mathematics Differential equation 010102 general mathematics Linear system Topological entropy 01 natural sciences 010305 fluids & plasmas symbols.namesake Bounded function 0103 physical sciences symbols 0101 mathematics Invariant (mathematics) Topological conjugacy Linear equation Mathematics |
Zdroj: | Journal of Applied Mathematics and Physics. :418-429 |
ISSN: | 2327-4379 2327-4352 |
DOI: | 10.4236/jamp.2019.72032 |
Popis: | The purpose of this paper is to extend the concept topological entropy to nonautonomous linear systems. Next, we shall give estimation of the topological entropy for the class of bounded linear equations on Rn. Finally, we are about to investigate the invariant properties of one through the transformations such as topological conjugacy, topological equivalence and kinematically similar and then show that topological entropy of one is equal to sum of positive Lyapunov characteristic exponents. |
Databáze: | OpenAIRE |
Externí odkaz: |