Paper-based Electrochemical Devices Coupled to External Graphene-Cu Nanoparticles Modified Solid Electrode through Meniscus Configuration and their Use in Biological Analysis
Autor: | Bruno Gabriel Lucca, Jacqueline Marques Petroni, Valdir Souza Ferreira, Diego C. B. Alves, Luiz Carlos da Silva Júnior |
---|---|
Rok vydání: | 2017 |
Předmět: |
Materials science
Graphene 010401 analytical chemistry Oxide Nanoparticle Nanotechnology 02 engineering and technology Glassy carbon 021001 nanoscience & nanotechnology Electrochemistry 01 natural sciences Reference electrode 0104 chemical sciences Analytical Chemistry law.invention Electrochemical cell chemistry.chemical_compound chemistry law Electrode 0210 nano-technology |
Zdroj: | Electroanalysis. 29:2628-2637 |
ISSN: | 1040-0397 |
DOI: | 10.1002/elan.201700398 |
Popis: | This paper demonstrates, for the first time, the use of paper-based electrochemical devices coupled to external solid working electrodes. The paper-based electrochemical cells were fabricated using inexpensive and largely available office paper, according to a simple protocol that consists on the creation of hydrophobic barriers using paraffinized paper and preheated metal stamp. The counter and reference electrodes were integrated to the paper platform through the deposition of carbon and silver inks, respectively. The electrochemical paper analytical device (ePAD) was coupled to external glassy carbon rod electrode modified with reduced graphene oxide doped with Cu nanoparticles through meniscus configuration. The analytical usefulness of this electrochemical approach was demonstrated through the simultaneous determination of paracetamol and caffeine in biological samples. The analytes were successfully quantified in real urine samples and limits of detection of 24.6 nM (paracetamol) and 36.1 nM (caffeine) were obtained. The paper platform showed good stability (RSD of 1.07 % for the peak currents and 1.43 % for the peak potentials) and satisfactory performance. The use of solid electrodes coupled to paper electrochemical devices, firstly demonstrated here, opens new possibilities for the utilization of ePADs in electrochemistry and electroanalytical chemistry and offers advantages such as the extremely reduced consumption of reagents and the minimal generation of wastes. |
Databáze: | OpenAIRE |
Externí odkaz: |