On the Laplacian coefficients and Laplacian-like energy of bicyclic graphs
Autor: | Shang-Wang Tan |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Linear and Multilinear Algebra. 60:1071-1092 |
ISSN: | 1563-5139 0308-1087 |
DOI: | 10.1080/03081087.2011.643473 |
Popis: | Let be the characteristic polynomial of Laplacian matrix of an n-vertex graph G. We present three transforms on graphs that decrease all Laplacian coefficients c k (G), then we characterize the graphs with the minimal Laplacian-like energy, which is the sum of square roots of all roots on φ(G, λ), in the set of all bicyclic graphs with fixed order and matching number. Furthermore, we determine the graphs with the smallest and the second smallest Laplacian-like energy among all n-vertex connected bicyclic graphs except B n , where B n is the graph obtained from a four-vertex cycle C 4 by adding an edge joining two non-adjacent vertices and adding n − 4 pendant edges to a vertex of degree 3. |
Databáze: | OpenAIRE |
Externí odkaz: |