Popis: |
Let {Ai}, (1 ⩽ i ⩽ N) be a finite set of regular summability matrices, {λ(m)},{μ(m)}, λ(m)↑∞, μ(m)↑∞, {ρ(n)}, ρ(n)↑∞, functions such that λ(m) − λ(m−1) ⩽ 1, (m = 2, 3, ...) and $$ \mathop {\lim }\limits_{m \to \infty } \sum\limits_{n = 1}^{\lambda \left( m \right)} {\rho \left( n \right)\left| {a_{mn}^1} \right|} = \mathop {\lim }\limits_{m \to \infty } \sum\limits_{n = \mu \left( m \right) + 1}^\infty {\rho \left( n \right)\left| {a_{m,n}^i} \right|} = 0,\left( { \leqslant i \leqslant N} \right) $$ (1) |