Crack growth induced by sonic IR inspection
Autor: | Kyle Lick, William Riddell, Jacob Kephart, John Chen |
---|---|
Rok vydání: | 2007 |
Předmět: |
Materials science
business.industry Mechanical Engineering General Physics and Astronomy Fracture mechanics Structural engineering Mechanics Ultrasonic excitation Crack growth resistance curve Crack closure Mechanics of Materials mental disorders General Materials Science business Stress intensity factor Load ratio Stress concentration |
Zdroj: | Nondestructive Testing and Evaluation. 22:83-92 |
ISSN: | 1477-2671 1058-9759 |
DOI: | 10.1080/10589750701447672 |
Popis: | We have developed an experiment to study the propagation of laboratory-synthesized fatigue cracks under various controlled conditions during Sonic IR inspection. The experiment provides for good repeatability in testing. The parameters of interest include the initial crack length, load history (stress intensity and load ratio) during crack generation, geometry of the crack, material and also the various conditions involving the ultrasonic excitation source. In general, we find that under typical sonic IR inspection conditions, the initial crack will propagate under sonic IR testing. The crack growth after each inspection event varies and exhibits a distribution in length of propagation. The results show that the average crack propagation decreases with increasing stress intensity factor, and we test two hypotheses about the cause of this. Furthermore, we find that crack propagation is affected by the initial crack length. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |