Reservoir interactions of a vortex in a trapped three-dimensional Bose-Einstein condensate
Autor: | Ulrich Zülicke, S. J. Rooney, Nick P. Proukakis, A. J. Allen, Ashton S. Bradley |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Physical Review A. 93 |
ISSN: | 2469-9934 2469-9926 |
DOI: | 10.1103/physreva.93.063603 |
Popis: | We simulate the dissipative evolution of a vortex in a trapped finite-temperature dilute-gas Bose-Einstein condensate using first-principles open-systems theory. Simulations of the complete stochastic projected Gross-Pitaevskii equation for a partially condensed Bose gas containing a single quantum vortex show that the transfer of condensate energy to the incoherent thermal component without population transfer provides an important channel for vortex decay. For the lower temperatures considered, this effect is significantly larger that the population transfer process underpinning the standard theory of vortex decay, and is the dominant determinant of the vortex lifetime. A comparison with the Zaremba-Nikuni-Griffin kinetic (two-fluid) theory further elucidates the role of the particle transfer interaction, and suggests the need for experimental testing of reservoir interaction theory. The dominance of this particular energetic decay mechanism for this open quantum system should be testable with current experimental setups, and its observation would have broad implications for the dynamics of atomic matter waves and experimental studies of dissipative phenomena. |
Databáze: | OpenAIRE |
Externí odkaz: |